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A Methodology for BuildingApplication-Speci�c Visualizationsof Parallel ProgramsTechnical Report GIT-GVU-92-10John T. StaskoEileen KraemerGraphics, Visualization, and Usability CenterCollege of ComputingGeorgia Institute of TechnologyAtlanta, GA 30332-0280O�ce: (404) 853-9386Email: stasko@cc.gatech.eduAbstractVisualization of computer programs, particularly parallel programs, promises to help pro-grammers better understand, develop, and debug their code, especially if the visualizationsare relatively easy to create. We have developed a visualization methodology being usedas a component in a comprehensive parallel program visualization system. The focus ofthe system is on application-speci�c user-tailored program views. An application-speci�cvisualization of a parallel program presents the inherent application domain, semantics, anddata being manipulated by the program in a manner natural to one's understanding of theprogram. In this paper we discuss why application-speci�c views are necessary for programdebugging, and we list several requirements and challenges that a system for application-speci�c viewing should meet. The visualization methodology that we introduce includesprimitives for designing smooth animation scenarios, and most importantly, for allowingdesigners to visualize or showcase the concurrency exhibited by parallel programs.
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1 IntroductionSoftware visualization is the use of graphics to illustrate the methods, constituents, andpurpose of computer algorithms and programs[Mye90, PSB92, SP92]. When the visualiza-tion is dynamic and it illustrates the semantics or abstract operations of a program, thevisualization is often called algorithm animation[Bro88]. In this paper, we describe a newanimation methodology particularly useful for developing dynamic visualizations of parallelprograms, a relatively unexplored area of computer science. Visualization techniques canbe applied to a number of activities involved in parallel program development includingprogram design, performance evaluation, and debugging. The most successful applicationto date has been for performance evaluation and tuning. The focus of our work, however, isthe use of visualization to assist debugging and correctness checking, an area that has notreceived as much attention as performance evaluation. Parallel program debugging remainsan extremely challenging task, and tools to aid debugging are critically needed.Visualizations for correctness debugging are di�erent than those for performance evalu-ation because debugging requires application-speci�c program views. What do we mean byan application-speci�c view? This type of view illustrates the semantics of a program, itsfundamental methodologies, and its inherent application domain. For example, an anima-tion of a sorting algorithm should show the data values being exchanged. A visualizationof Gaussian elimination should show the matrix of values as it is manipulated. A visualiza-tion of a particle simulation should show the particles moving about a chamber. In short,an application-speci�c visualization of a program should be recognizable as presenting theparticular program or program class.By presenting the execution of a parallel program in its inherent semantic format orapplication domain, a visualization system can provide programmers insight into the pro-gram's functionality. The same information could be acquired by examining program traceslisting variables' values throughout execution, but this type of tracing is much more deliber-ate and it usually requires the programmer to make mental connections between variables'values and the program state at particular times.Sarukkai and Gannon echo the importance of application-speci�c views in [SG92]:While it is convenient to have prede�ned visualizations of programs, the prob-lem with such tools is that is is not easy to rapidly test new visualizations ofthe program execution. Further, most of these tools are strongly tied to thesemantics of the trace data and hence cannot be used on similar data obtainedfrom di�erent machines or programming environments, without some e�ort.Performance visualization di�ers from application-speci�c program visualization becauseperformance views depict how e�ciently a program is executing on a parallel computer.Performance views illustrate message passing, processor utilization, memory access, etc.,and they are typically drawn from a library of graphical widgets, gauges, x-y plots, andcharts. Figure 1 illustrates two examples of these types of views. Performance views,because they do not focus on the semantics of a particular program, can be reused for manydi�erent applications.In the remaining sections of this paper we discuss what a system needs to provide in1
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Figure 1: Some examples of the style of views presented in performance visualizations.order to support application-speci�c visualizations. We describe the visualization method-ology/system that we have created to address those needs, and we give a few examples ofanimations of parallel programs created with the system.2 Challenges and RequirementsAnimating a parallel program is intrinsically more challenging than animating a serial pro-gram because of the non-deterministic nature of parallel programs. A serial program gener-ates a stream of logical events that we can animate in their order of occurrence. In a parallelprogram, events of interest from the di�erent processors are logged in separate streams thatmust be merged to create an animation. Providing a support model for coordinating thegraphical elements that represent the parallel program's actions, or possible actions, is aprimary challenge of a parallel program animation system.Parallel program visualizations also are more di�cult to create because of the simul-taneity of program operations. In a serial program, only one logical operation occurs at agiven moment, and the program's visualization re
ects this. In a parallel program, manyoperations might be occurring \simultaneously," and the program's animation should il-lustrate this concurrency. Consequently, parallel program views will be more complex togenerate, with many overlapping, concurrent graphical actions. A visualization system forillustrating parallel programs must be able to clearly present the concurrencies, or pos-sible concurrencies, in the programs. The methodology described in this paper has suchcapabilities.The ability to create application-speci�c views of programs is yet another challenge.Application-speci�c program views require unique graphics displays for each di�erent classof algorithm or program to be shown. For example, a sorting view could be reused formany di�erent sorting algorithms but it would di�er dramatically from a view for graphprograms. Therefore, an application-speci�c program visualization system cannot simplyprovide a prede�ned view library if it is to address a general set of programs. Rather, thesystem must provide a 
exible graphics support paradigm.One possible support platform that immediately comes to mind is a low-level graphicstoolkit or library such as the X Window System's Xlib package. Unfortunately, this solution2
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is undesirable for a number of reasons. First, this type of library has a steep learning curvedue to its complexity and size. Second, visualization development within such a complexenvironment is time-consuming, which is undesirable for building quickly-needed debuggingviews. Finally, such a library is not tuned to the domain of parallel program visualization.Because we know how the visualizations are to be used, we can eliminate some of theunnecessary functionality in a general graphics toolkit. We also can provide more extensivecapabilities tuned to the particular display of parallel programs.What are the requirements for application-speci�c parallel program visualizations? Be-low we list �ve capabilities that a support system should provide:� The graphics system must provide basic 2D graphical objects such as lines, rectangles,circles, polygons, and text for its views. The system should support color views, andif possible, support 3D graphics for application programs involving 3D data.� The graphical design and development methodology should be relatively easy to learnand use. Visualization creation and implementation should not require days or weeksof work. With that said, it would be naive to believe that sophisticated, application-speci�c views can be developed with little or no e�ort. Nevertheless, the visualizationsystem should make every e�ort to foster ease-of-use.� The graphics system should provide primitives for creating animations as well as vi-sualizations. Programs are dynamic, time-varying entities. Animation helps illustratehow a program's execution proceeds. Continuous, synchronized motion is critical forvisualization of parallel programs. Animation is important because of the continu-ous nature of many physical simulations to be analyzed, and because a visualizationwith choppy, discrete updates is signi�cantly more di�cult to understand than onepresenting a continuous stream of changes.� The graphics system should help illustrate the concurrency inherent in parallel pro-grams. One challenging aspect of parallel program development is control of con-currency and synchronization. If a graphics system has primitives to help illustrateprograms' parallelism via concurrent graphical motions and actions, it will greatlyassist program debugging.� The graphics system should promote a straightforward mapping mechanism by whicha programmer can associate program objects and actions with the graphical objectsand the transitions they undergo. The system should be able to visualize programsfrom a variety of system models and architectures.3 Animation MethodologyWe are building a comprehensive program visualization system called PARADE (PARal-lel program Animation Development Environment) for developing animations of parallelprograms[AS91, SAK91]. The system contains components for 1) extracting and format-ting program event information; 2) mapping and restructuring the event information asinput to the animation component; 3) creating the animated graphical program views. The3
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Figure 2: PARADE system overview, highlighting the three major components.third component, our animation methodology, is the focus of this paper. Figure 2 illustratesthe relationships of these three components.To understand how the methodology �ts in PARADE, �rst we'd like to brie
y mentionthe other two components. In the �rst component, extracted program information canbe either automatically generated system events such as control, message, and synchro-nization events, or it can be programmer annotated application-speci�c program events.We currently write the events to trace �le(s). We also are exploring the use of temporaldatabases[Sno88] to store and manipulate event information, and the use of on-line (pseudoreal-time) processing and display. In all of these methods, we do assume that the paral-lel program being animated and its animation are in separate process spaces so that theycannot share data structures.The second component, which we call the animation choreographer, gathers theprogram events that have been logged in separate trace �les and structure them accordingto user preferences. The animation choreographer displays an execution history graphbased on the trace events, including synchronization events. The user interacts with thechoreographer display to control the ordering of the display events and the relative speedof the displays. One moment a viewer may wish to view program execution as re
ected byprogram maintained application-level time. Another moment the viewer may want to viewprogram execution as related to a global system clock time. In other instances the viewermay wish to observe program behavior according to logical precedences, so-called Lamporttime[Lam78], or even under some alternative feasible execution ordering. The animationchoreographer, much more so than in serial program animations, is an absolutely crucialelement in the system.The third component of the system, the focus of this paper, is a visualization methodol-ogy to address the �ve requirements for application-speci�c viewing described in the preced-ing section. The methodology is called POLKA (Parallel program-focused Object-orientedLow Key Animation) and it is an object-oriented basis of visualization and animation that4
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Figure 3: The di�erent types of classes involved in a POLKA animation. The levels in thehierarchy illustrate the \has-a" relationships.includes high-level graphical object and motion primitives. We have implemented both2D (on top of the X Window System) and 3D (on top of Silicon Graphics GL) versionsof the methodology in C++. POLKA provides two critical features: 1) It supports trueanimation{By that we mean smooth, continuous movements and actions, not just blinkingobjects or color changes. 2) It supports concurrent, overlapping animation actions that canproperly re
ect the concurrent operations occurring in a parallel program.Figure 3 illustrates the di�erent classes of objects used in a POLKA program anima-tion. Each program to be animated requires a top-level Animator object. Actually, aprogrammer subclasses POLKA's Animator class and builds a derived Animator speci�-cally for a program or class of programs. The Animator class contains data members andmember functions that help map program events to their corresponding actions. An An-imator contains methods for registering and receiving program events, de�ned by stringnames and trailing integer, real, and/or string parameters. An Animator also must containa Controller1 method, which speci�es how to react to di�erent program events (in otherwords, which graphics routines should be called.) Currently, we automatically generate theController given event and animation routine descriptions. Eventually, in PARADE, theAnimator's capabilities will be moved to the animation choreographer.Each Animator includes one or more user-designed program View data members. Pro-gram Views are subclassed from a base View class and each is a window onto the program'sexecution, providing a speci�c graphical appearance or visual representation. Each viewmust have a number of animation scenes (member functions) de�ned for it. These sceneshelp distribute the entire animation among a number of smaller, more manageable units.The base View provides one primary method, Animate, and a primary data member, time.The variable time maintains the View's animation frame count, or time, which starts atzero. The Animate method generates a speci�ed number of new animation frames.A View contains three primary classes of objects that developers instantiate and manip-1By convention, we will present class methods and data members in slanted typeface throughout thispaper. 5
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ulate to design a visualization: AnimObject, Location, and Action. The basic idea ofthe animation methodology is that programmers position AnimObjects (graphical entitiessuch as lines, rectangles, ellipses, spheres, text, etc.) within the View coordinate system.To help achieve action or motion, programmers instantiate Action objects which have type,duration, and modi�er attributes. For example, a simple Action might be a leftward move-ment of 0.4 units for 10 frames. Programmers assign Actions to AnimObjects using theAnimObject Programmethod. For example, we could Program the Action mentioned aboveinto an Ellipse AnimObject to begin at frame 3 of an animation. To generate animationframes, a programmer uses the View's method Animate. Each View is broken into a num-ber of animation scenes (procedures or functions) which create and manipulate these threeobject types. Typically, once some initial imagery is established, an animation is playedby alternating through sets of Program and Animate actions as more information about aprogram's execution becomes available. Below we highlight a few important details aboutthe View constituent objects.AnimObject: An AnimObject is the base class for all types of graphical objects; itprovides a set of default object method handlers. Some sample derived classes includeRectangle, Line, Circle, Spline, Polygon, Text, and in the 3D version Sphere, Cube, Cone,etc. POLKA is designed so that end-users can derive their own AnimObject subclassesas well. When an AnimObject is constructed, its attributes are speci�ed and it is merelyadded to the set of available objects. To have the object appear in animation frames, theprogrammer must explicitly use the Originate method, with a given frame time argument,to map the object's graphical representation to its View. To remove an object permanentlyfrom a View, programmers must use the Delete operation which also takes a frame numberparameter. This is useful because programmers may need to speci�cally remove objects atparticular future frames. POLKA also provides an AnimObject of type Set for associatinggroups of objects together and referencing them as one.Location: Locations in POLKA can be used to reference and remember importantpositions for later use. They are hx; yi markers in the real-valued View coordinate system.Action: An Action is an object encapsulating a simple movement or change that canbe applied to an AnimObject. An Action has both a type, which is simply a string identi�ersuch as \MOVE," \COLOR," or \RESIZE" and a list of hx; yi o�set pairs, de�ning a two-dimensional sequence in the View coordinate system. In more complex 3-D systems suchas [Z+91], the o�set lists or paths can consist of control points of varying types such asvectors, expressions, and strings. For our simpli�ed world, restricting the control points totwo real numbers, which correspond with the View coordinate system, is practical, e�cient,and advantageous.POLKA's animation methodology is derived from a combination of principles of thepath-transition paradigm[Sta90a] of the TANGO algorithm animation system[Sta90b] inwhich designers create images and modify them along paths or two-dimensional trajectoriesand also from the techniques of more traditional production 3D animation systems.POLKA's animation methods di�er critically from TANGO's path-transition paradigmin how animation actions are de�ned and executed. Using the path-transition paradigm,programmers create transitions (objects encapsulating change which include image andpath components) and then they perform these transitions, which execute to completion.In order to achieve simultaneous actions on one object such as changes in color, size, and6
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position, or to have multiple images changing simultaneously, transitions must be combinedtogether using the compose operation into a new, more complex union transition that latercan be performed. This model works well for serial programs. For parallel programs,designing overlapping actions through composition quickly becomes extremely complicatedto maintain. In the next section, we will expand upon this point in the animation examples.In POLKA, an AnimObject is Programmed (a formal AnimObject method) with anAction at a particular View frame time. The frames of the View's animation then aregenerated using the Animate method. A programmer has total control over when to allownew animation frames to be generated. The Animate method checks all AnimObjectswithin a View, and if they have Actions programmed to occur at the current frame, theAnimObjects are sent Update and Draw messages.Designing overlapping motion sequences in POLKA is simple because individual objectsare programmed independently without any references to other objects. No extra work isrequired to specify how to combine the objects' Actions. For the animation examplesdescribed later, this capability is absolutely essential.ImplementationPOLKA is implemented in C++. The 2D version is built on top of the X Window Systemand the 3D version is built on top of Silicon Graphics GL. POLKA is relatively small,about 5000 lines of code, thus supporting our goal of keeping the system compact. POLKAprovides Animator, View, AnimObject, Location, and Action classes. Animator and Viewclasses are not used directly; programmers derive their own subclasses, inheriting methodssuch as View's Animate, and rede�ning other virtual functions such as the Animator'sController.We separate an AnimObject and its visual appearance into two di�erent classes, withone implicitly created during the other's construction. We implement AnimObjects andtheir subclasses using a parallel class hierarchy in C++[Mey92], making the AnimObjectclass a \handle" or \Cheshire Cat" class. Each AnimObject contains a pointer to anAnimObjectImpl class, or more precisely, one of the speci�c subclass implementation objectsthat de�nes its visual appearance. This separation is valuable for allowing AnimObjects tochange their appearance (line, circle, rectangle, etc.) dynamically. Our animation examplelater will reinforce this point.The primary sequence of creating an Action, programming the Action into an AnimOb-ject, and then generating the animation is illustrated in the brief code sample below.// We are within a View animation scene method.// Assume the following types and that the// Locations and Rectangle have initial values.//// Location l1,l2;// Rectangle *r;// Action *a;// int len; 7
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// Create a straight movement action from location <l1> to <l2>.a = new Action("MOVE", l1, l2, STRAIGHT);// Parameters are Action type, from loc, to loc, path pattern.len = r->Program(time, a);// Action <a> programmed at time <time>.// Program returns Action's length in frames.// <time> is a data member of View.time = Animate(time, len);// Animate for <len> frames starting at// time <time>. Return the new <time> value.The variable time starts at zero and is updated using the Animate method. Here, we havegenerated a number of frames in the Animate call, but we could have just as easily generatedone frame at a time. This is important if new program activities occur subsequent to theinitial frame generated by Animate but prior to the last frame it generates.POLKA, taken at a basic level, does not completely meet our goal of being easy-to-use. The methodology of the animation paradigm must be learned, and admittedly, it isC++. But we have found the system to be quite accessible, much easier for programmersto learn than X Windows programming, for example. Graduate students not well versed inC++ have successfully developed their own program animations quickly. The 3D versionof POLKA, in particular, provides many default parameters and simpli�cations so thatdesigners need not worry about specialized, but usually super
uous, graphics details. Pro-grammers need not know 3D graphics techniques such as shading, ray-tracing, and so on,in order to create a 3D visualization.Most importantly, however, POLKA has constituent primitives speci�cally for continu-ous animation, a capability not found in other systems. Smooth incremental animations ofprograms help to preserve context and promote comprehension. For instance, rather thanmaking the nodes of a graph 
ash as they are visited in a program, a graph tour can beillustrated by a lozenge that smoothly traverses both graph nodes and edges. POLKA helpsremove the di�culties inherent in specifying these types of animations.4 Example AnimationsThis section describes a few example application-speci�c program animations that we havebuilt using POLKA.4.1 Pre�x computationOne of the �rst animations we developed was that of the pre�x sums problem, in which asequence of n numbers is provided and the object is to compute all n initial sums of thesequence. We implemented a parallel version of the pre�x sums algorithm on a Sequent.The program assumed that the number of processors was a power of two with each processormaintaining an additional array of sums.To begin development, we designed (conceptually) a graphical appearance for the pro-gram. (A view from the resultant animation is shown in Figure 4.) The visualization8
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contained four structures of interest: The array into which the data was initially read andthe array in which the pre�x sums were placed were both of size n, the number of valuesentered. The other two arrays of size N + 1, where N was the number of processors, wereused to represent the per-processor sums and the per-processor temporary-sums.We used a horizontal rectangle to represent each of the arrays. The per-processor sumsand temporary-sums arrays were partitioned into N + 1 sections, each of which contains atextual display of the element's current value. The data and pre�x sums arrays, contain-ing many more elements, were not partitioned nor were the values of individual elementsdisplayed.As the initial values were read into the data array, a black rectangle grew in the dataarray from left to right, eventually �lling the structure with black when all values had beenread in. As the program continued, each processor read the initial data values from itsassigned section of the data array. A running total was maintained and the current totalplaced into that processor's current element of the pre�x sums array. This was representedgraphically as a rectangle, colored according to processor-ID, shown growing in each sectionof the pre�x-sums array. Half-tone shading was used here to indicate that the sums placedinto the array were not complete, but merely the per-processor pre�x sums.When a processor completed its section of the pre�x-sums array, its total was displayedin the per-processor sums array. An arrow from the pre�x-sums array to the per-processorsums array showed the connection, as did the use of appropriately colored text labels.As the per-processor sums were combined to calculate an initial pre�x sum for eachprocessor, the movements of values within and between the per-processor sums and tempsums array were shown using color-coded arrows and moving text. The text moved in aslow arc from one partition to another so that the user could identify both the source andthe destination. This portion of the visualization highlighted several errors in our initialimplementation of the program, including the erroneous use of a barrier synchronizationwithin a conditional statement.Once each processor had received its initial pre�x sum, this value was added to eachelement in that processor's section of the pre�x-sums array, completing the calculation. Theprogress of this �nal addition was again indicated by a growing, color-coded, horizontalrectangle. At this point, full shading was used to indicate that the �nal values are present.We implemented this animation view and scenario through 10 POLKA animation scenes.Eight of the routines, the most important ones, were associated with the movement of datafrom one structure to another, indicating the value, the indices, and the processor. An\Init" routine began the animation by indicating the number of processors and the numberof data elements, and it created the objects representing each of the arrays. A \Done"routine performed a �nal clean-up of objects.Concurrently with the graphics coding, we instrumented the developing parallel pre�xsums source code so that it wrote out timestamped event information to ascii text �les.The event information included the event type and parameters such as processor numberand values of variables. Each processor wrote to its own �le, so there was no contentionfor the �les by the processors. These �les were then merged using other components of oursystem and processed into \Display Event" calls which activated the appropriate animationroutines. 9
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Figure 4: A still frame from the pre�x animation. At this point the per-processor pre�xsums have already been calculated, and the �nal pre�x sum values are being calculatedand placed into the array. (Of course, a static picture does not do justice to the smoothanimation. Nor do the colors map well to black-and-white shading.)
10
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We implemented the POLKA animation routines before the program's implementationwas �nished. Consequently, we were able to use the animation as a visual tracing aid.The process of developing the pre�x animation and viewing its animations of executions onvarious input sets helped uncover a number of problems and bugs in the program's ongoingimplementation. This and other early animations we developed also helped us understandbetter what an application-speci�c parallel program visualization system needs to provide.4.2 A 3D Particle SimulationThis section discusses a program that simulates a particle chamber with many particlesbouncing around inside a container or box. As each particle strikes a wall, it instantaneouslychanges velocity and then maintains that velocity, moving in a straight line, until it strikesanother wall. The program maintains its own speci�c time scale. For simplicity, we ignoreparticles striking each other within the chamber. (That capability would add complexityto the program itself, not the POLKA animation.)The animation of a parallel program depends upon the style of events logged in theprogram's trace �le(s). In this example, we assume a model which records particle-wallcollision events and the times that they occur. Speci�cally, the particle program issues fourtypes of events. The �rst event initializes the animation. The second event initializes eachparticle. The third event is reported whenever a particle strikes a wall. The �nal event,called Release, is reported once each clock cycle. The Release event reports the maximalclock time up to which all particles could be traced and animated. This reported time is theminimal (earliest) time of all particles' most recent collision times. That is, the reportedtime is the time (relative to zero) to which it is possible to interpolate particles' positionsbased on their collision events already reported in the trace �les. Later in this section wewill discuss alternative event models and their rami�cations upon the animation designcode.Our animation of this program includes four animation scenes, SetUp, InitPart, Colli-sion, and ClearTime, that correspond directly to the program's events. That is, the Anima-tor's Controller will set up a one-to-one mapping between program events and animationscenes. The SetUp scene initializes View information such as the mapping from the pro-gram's integer coordinates to the View's real coordinates. In the InitPart scene, we createan AnimObject (initially a rectangle) to represent each particle. In the Collision scene, weuse the particle's previous collision position and the new collision position reported to thescene in order to calculate the appropriate wall-to-wall movement Action. We then programthe Action into the speci�ed particle's AnimObject. For this example, we simply map eachprogram clock cycle to an animation frame. In the ClearTime scene, which is invoked foreach clock cycle of the program, we call View's Animate method to generate the requirednumber of frames, and we update the View time.Below is the code for the particle program described using a mix of pseudo-code and aparallel C style language. Comments indicated by \//" would have the appropriate codesegments �lled in for the actual program. The highlighted statements are those insertedinto the original particle program to generate the trace events reported to POLKA.11
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main(){ int x[MAX], y[MAX], z[MAX], vx[MAX], vy[MAX], vz[MAX] ;int started[MAX], clock=0;int num, winsize, bounced, mintime, i;// Initialize program data such as winsizeWriteAlgoEvt("Init", winsize);printf("Enter number of particles\n");scanf("%d",&num);for (i = 0; i<num; i++) par_do { // in parallel// Assign particle[i] an initial position x[i], y[i], z[i]// and an initial speed vx[i], vy[i], vz[i]WriteAlgoEvt("Originate", i, x[i], y[i], z[i]);started[i] = 0;}for ( ; ; ) {clock++;for (i = 0; i < num; ++i) par_do { // in parallel// Update particle[i]'s positionbounced = 0;if (particle[i] has struck any wall) {// change its velocitybounced = 1;started[i] = clock+1;}if (bounced)WriteAlgoEvt("Collision", i, clock, x[i], y[i], z[i]);}// Calculate min start time of all particles// held in started[] arraymintime = parallel_min(started, num);WriteAlgoEvt("Release", mintime);}} The POLKA animation of the particle program, a snapshot2 of which is shown in Fig-ure 5, includes re�nements of the Animator and View classes. The Particles View contains2Of course, this frame does not adequately re
ect the dynamics and smoothness of the real animation.12
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Figure 5: A frame from the particle chamber simulation creating using POLKA. Some ofthe particles have changed from rectangles to circles and have changed color (simulated by�ll patterns for this �gure), as described later in the paper. Although this view is simple,it re
ects the physics of the simulation program quite well. (Figure missing)
13
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its animation scenes and important data members that are manipulated by all the scenes.The data members include the array part which holds the AnimObjects (actually pointers).The variable factor helps to convert from integer program coordinates to real-value Viewcoordinates. The arrays px and py maintain the previous position of each particle whencolliding with a wall. When a subsequent collision occurs, we use the previous position asthe \from" point of a computed path. The array release holds the animation frame timefor the start of a particle's current movement.class MyAnimator : public Animator {public:int Controller();private:Particles p; // The only View in this animation}class Particles : public View {public:int SetUp(int); // 4 animation scenesint InitPart(int,int,int,int);int Collision(int,int,int,int,int);int ClearTime(int);private:double factor;double px[MAX],py[MAX],pz[MAX];int release[MAX];Cube *part[MAX];} The View scene SetUp merely sets some initial parameters for the view and calculatesthe integer-to-real mapping factor.The InitPart scene �xes the initial position and release time of a particle, then it con-structs the initial rectangle AnimObject for the particle.intParticles::InitPart(int num, int x, int y, int z){ px[num] = double(x)/factor; // Initial positionpy[num] = double(y)/factor;pz[num] = double(z)/factor;release[num] = 1; // Start time of// first movepart[num] = new Rectangle(this, vis,px[num],py[num],pz[num], // Initial positionxsize,ysize,zsize, color, fill);part[num]->Originate(0); // Add the object// to the display list for time 0return(1);} The Collision scene receives particle number, time, and position arguments. It creates amovement action from the particle's previous position to the new position, and it programs14
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the movement Action into the particle (but it does not generate any animation). Finally,it must update the position and release �elds for the particle.intParticles::Collision(int num, int clock,int x, int y, int z){ double dx,dy,dz;dx = double(x)/factor; // Scaledy = double(y)/factor;dz = double(z)/factor;Loc from(px[num], py[num], pz[num]); // Previous positionLoc to(dx, dy, dz); // New positionAction a1("MOVE", &from, &to,clock-release[num]+1);// clock-release+1 total frames in the Actionpart[num]->Program(release[num], &a1);// Starts at time release[num]release[num] = clock+1; // Update to new valuespx[num] = dx;py[num] = dy;pz[num] = dz;return(1);} Finally, the ClearTime scene receives an animation time up to which it is safe to animate.intParticles::ClearTime(int clock){ // If we have a new advanced time,if (clock > time)time = Animate(time, clock-time);// animate from <time> to <clock>// for <clock>-<time> framesreturn(1);} This relatively simple POLKA code creates an informative, useful animation of theparticle program. Adding embellishments to the View is easy also. Suppose that theCollision scene receives a color parameter to which the particle should be changed. (Perhapsthis illustrates processor ID in the parallel program, and which processor is manipulatingthe particle.) By adding the codeAction a2("COLOR", color);part[num]->Program(clock, &a2);// Recall that clock is a parameter// to the Collision scene 15
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to the Collision scene, we achieve the desired e�ect.Suppose also that we desire to change the shape of a particle from a Rectangle to a Circleat some point in the animation. AnimObjects in POLKA receive this functionality throughthe Change method. An AnimObject is a constituent entity throughout an animation. Butits physical appearance, be it Line, Circle, Text, etc., is merely a modi�able attribute ofthe object. Below we simply construct a new appearance (but do not Originate it!) andChange the AnimObject appropriately.c = new Circle(this, vis, dx, dy, dz, radius, color, fill);// Now copy physical attributespart[num]->Change(clock, c);This capability is extremely valuable in parallel program animation. Suppose that wehave programmed an object to move across a View window, and subsequently, because ofprocessor delays a�ecting event logging, we learn that the object should change appearancehalfway across. In using the Change command, an AnimObject retains its programmingthroughout any appearance changes. Consequently, POLKA will illustrate the desired e�ectof the object moving, changing appearance halfway across, and continuing on its originalpath. This capability does not exist in the path-transition paradigm, and it is a key im-provement in POLKA.Even the simplest level of the animation described above would be exceptionally di�cultto implement with the path-transition paradigm. There, movements or transitions withoverlapping frames must be composed together to achieve simultaneous display. In theparticle simulation, an arbitrarily complex set of asynchronous, overlapping actions occurs,and it would require one super-transition in the path-transition paradigm that could only beperformed at the very end of the program's execution. The POLKA model of programmingActions and incrementally generating animation frames is much better suited for these typesof situations.The event model used in this example makes the animation design task trickier sincepositions of the particles are not reported regularly at each clock cycle. In reality, we maybe forced to use an event model of this type. An alternative simpler event model, sendingan Update-Position event with location parameters for each particle after each programclock cycle, would actually make designing the animation in POLKA easier. (We have alsoimplemented the animation using this method.) We described the animation based on the�rst event scheme to illustrate POLKA's 
exibility, power, and how it handles complex,overlapping actions.4.3 Other AnimationsFigure 6 shows a frame from a 2D sorting animation developed with POLKA. The sortinganimation represents the data values as rectangles with their heights corresponding to therelative values of the elements. When an exchange occurs, the two rectangles smoothly swappositions and change color to indicate which processor was responsible for the exchange.The sorting animation's routines consisted of about 80 lines of POLKA code.POLKA also can be used for animating more than only the semantic behavior of parallelalgorithms. Essentially, it is a general visualization environment for all features and types of16
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Figure 6: A frame from the sorting program animation.programs. Figure 7 shows a view of a Kiviat diagram[KK73] created using POLKA. A Kiviatdiagram (this View is modeled after one from the Paragraph system[HE91]) illustrates a setof processors as spokes on a wheel with each processor's recent average utilization re
ectedas distance along its spoke. When a processor is idle, its spoke is at the center of the wheel.When it is completely busy, the spoke is extended to the outer edge. This view is reallymore of a performance visualization than a program visualization. POLKA's animationmethodology also serves equally well as a platform for developing these performance viewsor even algorithm animations of serial programs.5 Related WorkVisualizing Parallel ProgramsA few existing systems have addressed the need for application-speci�c program views.The ParaGraph system[HE91], best known for its prede�ned library of performance views,contains facilities for application-speci�c views to be added and run under the infrastructureof ParaGraph's existing support environment. This task requires basic X Window Systemprogramming, however.Many of our goals mirror those of the system Voyeur[SBN89] which focuses on supportingeasy-to-create views matching a programmer's mental model of her code. Voyeur uses aclass hierarchy of views, so that derivations of views are easy. It does not appear thatmany types of views were implemented, however. Creating a new view, as is common inapplication-speci�c visualization, required X Window programming.The system presented in [LMCF90] provides many di�erent styles of program views.Their external view corresponds to the application-speci�c visualizations we seek. To createan external view, a programmer must extract information from an execution history graph,17
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Figure 7: Kiviat diagram, created using POLKA, that shows average processor utilizationover a given time interval.design a view in a Common Lisp environment, and then input the information to othervisualization tools.The Pavane system[CR91], which operates on a shared-memory tuple space architecture,supports formal mappings from a program space to an abstract animation space that canlater be rendered. This model supports highly application-speci�c program views. Todescribe a visualization, programmers must construct the mappings, which are similar tothose in formal proof systems.The IVE system[FLK+91] supports visualizations of programs on massively parallelSIMD machines. These process visualizations are developed using visualization templates,parametrical graphical object descriptions that can be created by re�ning existing templatesor by using a CAD-style tool. This model appears to support static visualizations muchmore so than animations.SIEVE.1[SG92], although speci�cally designed for performance visualization, supportsprogram views that can be considered application-speci�c. Views are designed using aspreadsheet programming model. This paradigm works well for views that can be describedfrom an algebraic speci�cation of program execution data.Object-oriented GraphicsThe use of object-oriented techniques for computer graphics has seen increased attentionrecently. The GROW system[Bar86] uses taxonomic inheritance and constraints to helpusers build program interfaces, most often graphical editors. The InterViews GraphicalToolkit[VL88] contains an extensive hierarchy of graphical objects (written in C++) and apowerful set of methods for manipulating these objects. Many di�erent applications suchas user interface builders and graphical editors have been implemented using Interviews.18
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POLKA di�ers from these systems in its focus on object classes for animation rather thanstatic graphics. The algorithm animation system Zeus[Bro91] makes extensive use of ob-jects, particularly at higher, more abstract levels, such as classes for algorithms, windows,and views. Animation designers have the power to inherit properties and methods frombase classes or to re�ne for their own particular requirements.6 ConclusionApplication-speci�c views illustrate programs in ways that help programmers rapidly assessthe programs' correctness. The myriad of possibilities for program visualizations requires ageneral-purpose graphical support methodology rather than a library of prede�ned views oran ad-hoc visualization technique. Achieving the tenuous balance of ease-of-use along withpower and animation capability is a challenge. We have created an animation methodology,POLKA, to address this challenge and support the display of parallel programs' concur-rent operations. POLKA retains the simple, yet e�ective, notion of modifying graphicalobjects along paths via the path-transition animation paradigm. POLKA adds, however,the key capability of \programming" actions into objects at desired animation times, andthen incrementally updating the animation time accordinging to cues from the driving pro-gram. We have illustrated how POLKA can be used to build animations of a parallel pre�xcomputation and a simpli�ed particle simulation.The methodology we have developed sacri�ces some ease-of-use for visualization speci�-cation power. Improving this trade-o� is our primary goal for future work. As one possibleimprovement, we hope to develop a direct manipulation visualization design tool simi-lar to the DANCE tool[Sta91] for sequential programs animated using the path-transitionparadigm. With such a tool, POLKA's Views and animation scenes could be generated bydemonstration rather than with graphics programming. We also continue to develop theother components, program monitors and the animation choreographer, of our parallel pro-gram visualization system PARADE. Work on these tools, most notably the choreographer,will drive future capabilities of POLKA.7 AcknowledgmentsBill Appelbe, Jim Foley, Eileen Kraemer, Noi Sukaviriya, Joe Wehrli, and Lorna Zormanread early versions of this paper and provided helpful feedback for its improvement. JoeWehrli's aid in implementing the 3D version of the system was invaluable.References[AS91] William Appelbe and John T. Stasko. Utilizing program visualization and ani-mation techniques to aid parallel program development and debugging (extendedabstract). In Proceedings of the 1991 ACM/ONR Workshop on Parallel and Dis-tributed Debugging, pages 207{209, Santa Cruz, CA, May 1991.19
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